The page you are looking for is temporarily unavailable.
Please try again later

Enthusiasts The Science Behind Piston Rings and Grooves Explained

14:42  14 march  2018
14:42  14 march  2018 Source:   hotrod.com

Michelin Introduces the New Road 5 Tire for Sport-Touring Motorcycles

  Michelin Introduces the New Road 5 Tire for Sport-Touring Motorcycles <p>The Michelin Road 5 will replace the Pilot Road 4 Series and is expected to offer better stability and grip in dry and wet weather conditions.</p>Michelin has known this for years, and through countless dollars spent and professional trials, they are releasing the successor to the heralded Pilot Road 4 line of tires at the beginning of 2018. Introducing the Road 5.

Piston ring grooves serve a larger purpose than simply supporting the rings. They impact combustion sealing, oil control, friction, and many more engine attributes.

To an engine, oil is life, so you need the right info if it’s going to survive the long haul

  To an engine, oil is life, so you need the right info if it’s going to survive the long haul To your engine, oil is what keeps all the various parts working together in harmony.&nbsp;What Oil Does

Research

Research

Wiseco is a world leader in piston technology because it focuses on the minute details of cylinder sealing science. Among those details, the type of piston rings used in racing and high-performance engines are always a hot topic. But the ring grooves in pistons also play a major role in sealing combustion pressure and controlling oil and blow-by.

That's one area where Wiseco extends the extra engineering effort to ensure maximum performance from its pistons. While various types of piston rings are more suitable to specific applications, the ring grooves themselves are often overlooked in the pursuit of optimum cylinder sealing.

Many engine builders go to great lengths to file precision end gaps, but ring clearance in the groove frequently goes unchecked and the quality of the ring groove sealing surface is rarely considered. Clearance and ring groove quality are frequently assumed. Wiseco goes to great lengths to make sure this is right, even if you don't check it.

Quick Tips: Cleaning cylinder bores for better ring seal and power

  Quick Tips: Cleaning cylinder bores for better ring seal and power When building an engine, it's the little things that separate good engines and great ones. On initial start-up, getting a quick piston ring seal is critical—and having a clean, properly lubricated cylinder wall accelerates this process. During a recent trip to Boost Addicts, experienced engine builder John Bouchard stressed the importance of clean cylinder walls to promote rapid ring sealing. "Any dirt that's left is going scratch the cylinder walls, and the rings won't seal as well as they could.

Decades ago, racers like Bill "Grumpy" Jenkins used to purchase unfinished pistons and cut their own ring grooves exactly where they wanted them and to the finish and tolerance they desired. Today, that's no longer necessary as manufacturers pay considerable attention to ring groove design.

The interface between the ring face and the cylinder wall is still widely discussed among racers and engine builders, but combustion sealing in the ring groove is equally important. For the best results, the ring groove must offer the ideal clearance and freedom of movement for the ring and it must provide a hard, flat sealing surface for the ring to bear against under high cylinder pressure.

Ring Groove Nomenclature

Axial Clearance: The vertical clearance remaining in the piston ring groove after the ring is installed. Depending on the application, the vertical clearance is typically 0.001-0.003-inch. With today's thin rings, some racers run axial clearance as tight as 0.0004-0.0005-inch, using gas ports to supplement ring pressure.

Toyota's Simple Tuning Tricks Make Big Efficiency

  Toyota's Simple Tuning Tricks Make Big Efficiency The Dynamic Force engine achieves 40-percent thermal efficiency, a number once thought impossible in production car engines.There's a huge amount of new innovation going on in traditional internal-combustion engines. Mazda's Skyactiv-X uses diesel-style compression-ignition; Infiniti has a variable-compression design. Automakers are realizing that, while electric and hybrid cars may be a tempting option, there's plenty of advancement left in the gasoline-burning piston engine.

Radial Back Clearance: Ring groove space behind ring when the ring face is flush with the piston ring land. A back clearance of 0.008-0.012 inch is typical for racing and high-performance pistons.

Radial Wall Thickness: Ring dimension from the front face touching the cylinder wall to the back or inside face of the ring. "D-wall" is the standard automotive thickness (SAE standard) and it's calculated by bore diameter divided by 22. For example: 4.125-inch bore divided by 22 is 0.187-inch radial wall thickness.

Axial Height

The dimension from one side face to the other, or ring thickness, usually expressed in fractional sizes like 1/16 inch, decimal sizes like 0.043 inch, or metric sizes like 1.5 mm. Smaller ring thickness means less mass and less inertia to overcome when the ring reverses direction at TDC and BDC. A thinner ring also generates less friction but there is a relationship between ring dimensions, sealing, and oil control.

001-ring-land-ring-grooves-explained© Evan Perkins 001-ring-land-ring-grooves-explained

Measuring Ring Groove Clearances

Axial clearance is typically checked by inserting a feeler gauge between the ring and the top of the ring groove. A slight drag will indicate the proper clearance. Start with the minimum of 0.001-inch and work up. Don't measure between the ring and the bottom of the ring groove as you might damage the sealing surface. Some builders measure the groove itself with a stack of feeler gauges and then compare it to measuring the ring thickness with a micrometer. The first method is preferred and it is good practice to check it at several places around the perimeter of the piston.

Variable-Compression Engines Are Now a Thing, But They're Far From a New Idea

  Variable-Compression Engines Are Now a Thing, But They're Far From a New Idea <p>Putting into production an engine with a variable-compression ratio has been an elusive goal since the first patent for one was filed in 1928.</p>Putting into production an engine with a variable-compression ratio has been an elusive goal since the first patent for one was filed in 1928. Now, after nearly 100 years of failed experiments and near misses by various manufacturers, Infiniti’s VC-Turbo engine is here, representing a significant milestone in the development of the internal-combustion engine. Below are two relatively recent dead ends in the quest for the variable-compression grail.

Back clearance is checked by inserting the edge of a ring into a groove and pressing it all the way to the back of the groove to make certain it does not protrude past the face of the ring land. You can determine the back clearance by measuring the depth of the ring groove with the depth scale on a set of dial calipers and then compare it to the measured radial thickness. If the ring groove is too thin to measure with a caliper depth scale, a machinist's scale is another option. Another way is to use modeling clay or soft wax; press it into the groove then remove it and measure with a caliper.

Ring Groove Quality

Ring grooves must be perfectly perpendicular to the cylinder wall so cylinder pressure can press the ring down against the land and out against the cylinder wall for optimum sealing. During the combustion event, cylinder pressure follows a path down the crevice volume and into the ring groove above the ring. It then fills the ring back spacing to press the ring against the cylinder wall. Axial clearance in the ring groove provides the filling path to the back of the compression ring so the ring is pressurized against the cylinder wall and the bottom of the ring groove.

The back space dimension is critical because it controls the ring's response time. Too much back spacing makes the ring slow to respond, but there must be some clearance so the ring can move and conform during all dynamic conditions. The main purpose for axial clearance is to allow the ring to spin. The cross hatch in the cylinder walls induces rotation of the rings. Vertical and horizontal gas ports in pistons are also an accepted way of routing cylinder pressure to the back of the ring.

2018 Piston Powered Auto-Rama: Tri-Five Chevys

  2018 Piston Powered Auto-Rama: Tri-Five Chevys <p>Fifty years from now people will still be building and driving 1955, 1956, and 1957 Chevys.</p>The Summit Racing Equipment I-X Piston Powered Auto-Rama is a magnet for virtually every type of specialty vehicle powered by a piston engine. You can see a sampling of the machinery on display here at the International Expostion Center in Cleveland, Ohio, elsewhere on this website. Right now, let's have a look at one of the most popular automobiles produced by Detroit: Tri-Five Chevys.

Microwelding

One of the most critical problems accompanying severe racing and high-performance piston applications is the potential for "microwelding." Microwelding damages the piston ring or ring groove sealing surface when localized friction welding causes the transference of material from the ring land to the ring side, most often the bottom ring side.

High temperature and excessive movement are the root causes. It frequently accompanies high temperature endurance and/or supercharged applications where ring placement is too high on the piston and too close to elevated combustion temperatures, or in endurance applications where severe conditions are ongoing. Microwelding upsets ring-sealing quality and can even jam the ring in the groove. It should be noted that ring grooves (especially the top groove) do not expand evenly since material thickness is not uniform due to dome profiles, dish profiles, and valve reliefs.

Ring Groove Placement

For years, the trend has gravitated toward tighter and higher ring packs on naturally aspirated applications. It promotes stability by spreading the contact points between the rings and the skirt and reduces the crevice volume, which resists detonation and promotes a more consistent burn, making the cylinder more active. Racers in the Super Stock classes always locate the top ring as high as possible to ensure stability of the ring pack and to promote a more active and thorough combustion event. It also lets them use shorter and lighter pistons.

Here's What Happened When A Guy Used Wooden Pistons In His Engine

  Here's What Happened When A Guy Used Wooden Pistons In His Engine A Russian YouTuber machined four pistons for his VAZ-2106's 1.6-liter inline-four engine, installed them, and tried to run the engine. It goes about as well as you might expect. We’ve probably all heard a variation of the tale of the man who bought a nicely-running used car, drove it around for a few weeks, and then noticed the engine starting to run rough.

Forced-induction and nitrous applications that are subjected to extreme thermal and pressure shock loads typically require moving the top ring down from the piston top to about 0.300-inch. In many cases this is also dictated by valve size and positioning, valve pocket requirements, the radial width of the top ring, and the piston pin location.

Sometimes the ring pack is moved down well over 0.400 inch to accommodate these concerns. Intake valve pocket specs generally control top ring position because the intake valve is always larger with more proximity to the edge of the piston crown. Thinner rings and smaller ring grooves offer more leeway for optimum ring placement because they require less space, but they are at risk in severe applications.

Moderate nitrous applications in the 250hp range will work with the ring pack approximately 0.250-inch down. Above that, more is always better as nitrous air/fuel ratios are always chaotic and unpredictable. In that case, 0.450-inch or more is not unreasonable.

Gas Ports and Ring Flutter

Ultra-thin, low-tension rings need combustion pressure provided by gas porting to achieve optimum sealing. Oval track and road racing pistons use horizontal gas ports at the top of the ring groove to resist carbon buildup while shorter duration drag racing engines use more effective vertical gas ports.

Gas ports deliver direct cylinder pressure behind the ring to seal the ring against the bottom surface of the ring land and to force it outward against the cylinder wall. The diameter and number of gas ports is largely based on application and piston diameter. The gas pressure must be evenly applied to the ring to promote a good seal and to prevent detrimental ring flutter.

Contact Reduction Grooves

These grooves are machined into the top ring land above the top ring to minimize contact drag when the piston rocks over upon reversal. They add minimal volume to the crevice volume, and they also help resist detonation by disrupting flame travel into the crevice volume where pressure spikes might unseat the ring.

Accumulator Groove

The accumulator groove is machined into the piston between the top (compression) ring and the second (scraper) ring. Its purpose is to provide additional relief space for pressure escaping past the top ring to build up before it attempts to pass the second ring. It supports top ring sealing by relieving pressure and it helps reduce ring flutter due to pressure changes. Accumulator grooves have proved most effective and they are a common feature on many, if not most, high-performance and racing pistons.

The quality and placement of the ring grooves on your pistons is just as important as your cam specs. Proper ring groove placement and ultimate sealing quality are the keys to more power and durability under any severe-duty applications. Hence it is important that you use the rings specified by your piston manufacturer or be prepared to share your ring pack information if you are providing your own rings. CHP

Photography by Evan Perkins

Source

Wiseco

800.321.1364

wiseco.com

Follow MSN Autos on Facebook and Twitter

The Experimental Engine That Uses Gas and Diesel .
A Reactivity Controlled Compression Ignition engine can achieve 60 percent thermal efficiency. That's incredible.This engine only lives on a test bench now, as Engineering Explained's Jason Fenske details. It's a concept developed by the University of Wisconsin-Madison that in lab testing has achieved 60 percent thermal efficiency. That means this engine is converting 60 percent of its fuel used into power rather than waste energy-a much higher number than any automotive engine in production today. For context, Toyota has a new 2.0-liter four-cylinder that achieves a remarkable 40 percent thermal efficiency, while Mercedes-AMG's F1 power unit achieves 50 percent.

—   Share news in the SOC. Networks

Topical videos:

This is interesting!